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Abstract

We derive the quantum limits for an atomic interferometer in which the atoms

obey either Bose-Einstein or Fermi-Dirac statistics. It is found that the limiting
quantum noise is due to the uncertainty associated with the particle sorting between
the two branches of the interferometer. As an example, the quantum-limited
sensitivity of a matter-wave gyroscope is calculated and compared with that of
laser gyroscopes.

1. Introduction

Matter-wave interferometry dates from the inception of quantum mechanics, i.e.,

the early electron diffraction experiments [1]. More recent neutron interferometry ex-

periments have yielded insight into many fundamental aspects of quantum mechanics

[2]. Presently, atom interferometry has been demonstrated and holds promise as a

new field of optics -- matter-wave optics [3]. This field is particularly interesting since
the potential sensitivity of matter-wave interferometers [4] far exceeds that of their

light-wave or "photon" antecedents [5].

However, as was emphasized at the recent Solvay conference on quantum optics,

there is at present no paradigm available for calculating or estimating the quantum
noise limits to matter-wave interferometers, and therefore we have no basis for esti-

mating the potential sensitivity of devices based on matter-wave interferometry (e.g.,
gyroscopes) [6].

In order to motivate the analysis and derive the quantum limits, we proceed as fol-

lows: First, we "set the stage" by considering a simple gyroscope and deriving the rota-

tion-induced signal in matter-wave optics. Next, we proceed to develop the theory for

atomic interferometers, cast in an operator formalism that is well suited to a quantum
noise analysis, and then we obtain the quantum noise limits for matter-wave interfer-

ometry. Finally, we compare current laser gyroscope sensitivity to that of near-term,
matter-wave devices.

We begin by considering an idealized atom interferometer used as a rotation detector

or gyroscope, as shown in Fig. 1. From this diagram it is easy to see that the atomic

path difference between the upper branch a and the lower branch fl is given by 8_' =

2r_2t, where _ is the angular velocity of the interferometer, r is the radius of the circle,
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FIG. 1. A schematic illustration of an interferometer with semicircular arms to be used as
a rotation sensor or gyroscope. The loop rotates with an angular frequency _ about an axis
through its center and normal to the loop plane. The path difference between counter- and

Er
copropagating beams can be easily seen to be K_ = r_ • -- where v is the atomic velocity.

U'

From these considerations the phase shift of Eq. (21) follows immediately. We may then
use this result to estimate the minimum detectable rotation rate _gnin, Eq. (23).

v the particle velocity, and t = z r /v is the particle transit time through the inter-

ferometer. This readily translates into a Sagnac phase difference of _a_ = k (_ga - "g_)

= 2m_2_/_. v = 2AD/_ v, Where _; -- _ / my is the atomic de Broglie wavelength [7] and

A the area enclosed by the arms. The phase signal is then given by _signal =

2A m_/_; independent of the interferometer shape as long as A is the total area

enclosed. This expression holds for both atom and light interferometers, if, in the

photon case, we define an effective photon mass m r implicitly by m r C2 = _i co. Now,

since the "mass" of a photon is governed by optical energies of a few electron volts --

and atomic masses are of order 10 3 MeV -- we see that matter-wave gyroscopes

potentially have a signal that is enhanced by many orders of magnitude, compared to
light (laser) gyroscopes. Thus motivated, we next consider a detailed analysis of phase
sensitivity in matter-wave interferometry.

2. A Simple Model

In accordance with current experiments [3], let us consider the model illustrated
in Fig. 2. There, we see a stream of N atoms passing one-at-a-time through a beam

splitter into a simple interferometer with upper and lower branches labelled a and fl,

respectively. Upon recombining the two beams, we inspect the resultant interference
pattern for phase shifts induced, say, by a gravitational potential between the two
branches or a net rotation of the system. As in the optical dual [5], one might expect
that the overall sensitivity of the device will be limited by the quantum limits imposed

by particle number fluctuations AN on the phase noise A_ in the interferometer. It is
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FIG. 2. We illustrate a scheme whereby a stream of N atoms is sent through a simple

interferometer during a measurement time t m. The atoms are split at beam splitter 1,

follow paths a or fl, are reflected off the mirrors, and are then recombined at beam
splitter 2. The recombined atoms are detected at upper detector a or lower detector b
where interference fringes are recorded.

often stated that AN is to be associated with the fluctuations in the arrival time of

atoms in the input beam, i.e., AN ~ _]fi where fi is the mean number of particles.

However, we shall show that the particle number noise arises not from fluctuations in

the input beam intensity but rather from beam splitter uncertainties pertaining to the

lack of knowledge of which path, a or fl , the atom has taken through the interfer-
ometer.

3. The Quantum Signal

Let us continue developing our simple model depicted in Fig. 2. We assume that,

upon reflection from a beam splitter surface, the particles undergo an unimportant

phase shii_ that we take to be z/2, but that in reality depends upon the structure of the

beam splitter. Upon passage through a beam splitter, however, the atom undergoes a

phase shift of epi, i = I, 2, for the first and second beam splitter, respectively. The

cumulative effect in the interferometer of these various processes on the atomic wave

function _f is depicted in Fig. 3, and leads to a wave function _'a corresponding to the

upper detector and _/b for the lower detector, namely

c,,01]_b = "_ 1 + e -ik (1)

where 0 a --- z/2 + k_g a + q)2 ' and 0 b - k_g a + _Pl + (I)2' and where, without loss of gener-

ality, we let _1 = _2 = z. Here, k is the atomic wave number and _'a and _'fl are the
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FIG. 3. Chasing phases through the interferometer accounts for accumulated phase shii_
in the upper or lower detectors. The phase shit_ upon reflection is arbitrary, but we choose

it here to be 1t/2 for simplicity. Upon transmission, a phase shii_ of _I or _2 is assumed

for beam splitter one or two, respectively, and without loss of generality we take _1 =

_2_.

path lengths through the upper and lower branches, respectively. We imagine now
that the beam is recombined by the second beam splitter and then the detectors a and b

shown in Fig. 2 count the number of atoms as they arrive in the recombined upper

beam or lower beam, respectively. If we label N atoms with the index i = 1, ..., N, as

those sent through the interferometer during a measurement time tin, then the appro-

priate state vector /_P)i for the i th atom in the interferometer, after recombination,

is given by

CiOa _ + eiOb (l+e-i_aP) lOa, lb)i 'Iq_i =-_(1 e-i%'P) ila"Ob_i (2)

where here _a/_- k(Aa- _)" We see that this state is an appropriate superposition of

the number states I1a , 0 b ) and I Oa , lb ) corresponding to an atom incident on the

upper or lower detectors, respectively. The state vector I_) N for the N-atom state is

then constructed via a direct product of the individual atomic states, namely

N

I >N - 1-I IcP)i (3)
i=1

^t ^
Let ca, / and c a,i, where _ = a,b, be the creation and annihilation operators, re-

spectively, for the number states Ins, n b )i' where, corresponding to number op-

A A_" ^

orators ha, i =- ca, i ca, i , the eigenvalues n o and n b are 0 or 1. Then the number opera-
A

tor N a for the number of upper or lower atoms is determined by
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N

^ E^No = no, i (o" = a, b) , (4)
i=l

A

and the operators c obey the commutation relations

A At At A ]Ca,i CO,j -I- CO, j Co.,i = _ij ' (5)

where the plus or minus sign indicates Bose or Fermi statistics, respectively. The

statistical nature of the atoms will be important in circumstances where the density
of particles in the interferometer is so large that there is more than one atom at a

time within a single coherence length, or if the atoms are injected in a correlated
A

manner into the input ports [9]. The expectation values (Na) N of these number oper-

ators, Eq. (4), are given by

r 2A 1 A
N(_[ Na 1(I)> N = i(la,0b [ na, i[la, 0b> i , (6a)

i=l

N(¢I Nb 1¢:i)) N ----- 1 -{-

i=l

A

i<0a ' 1hi nb,i {0a' lb)i" (6b)

This yields the expression for the mean number of atoms in the a and fl branches as

A 2 A 2

(Na> N = N sin 9a_/2 , (Nb) N = N cos 9al3/2 . (7)

These expectations constitute the signal; we proceed to calculate the noise.

4. A Calculation of Poisson Noise

As noted earlier, it is frequently stated that number fluctuations AN in the in-

terferometer should be just noise of the form _ due to fluctuations in the input

beam. Let us briefly investigate this hypothesis. A reasonable assumption is that the
distribution of the N atoms in the input beam is Poissonian with a distribution func-
tion Pn, given by

--n i

n -n
--- _ cPn n! ' (8)
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where B is the mean number of particles in the beam.
A

value of the operators N_ is then given by

The signal or expectation

N ^
(1_o> = Z n(q)l No I_)n Pn = _ (9)

n=l _COS2 _a_)/2_

where Y_ = _n n Pn' and the upper and lower terms in braces are associated with

detectors cy = a and _ = b, respectively -- a convention we shall use throughout.

are determined by the rootHence, the fluctuations accompanying this signal
A

variance (Lh_o_, which is found to be

fsin2 q)a_/2 _
(10)

Now, to get a determination of minimum detectable phase shift, one usually

equates the signal, Eq. (9),to the noise, given by Eq. (10). Regardless of the choice of

¢ , we see from Eqs (9) and (10) that upon equating signal to error, the phase de-

pendence cancels out and we have no determination of the minimum detectable

phase. The point is that Nis not a random number, since we have the constraint N a

+ N b = N = constant, and fluctuations in the incoming atomic beam do not de-

termine sensitivity. In other words, precise knowledge of the value of N obviates the

need for a Poisson analysis, since N is clearly not a random variable. What, then, is

the limiting noise mechanism in the interferometer?

5. The Quantum Noise

We compute the quantum noise fluctuations using the second quantized formal-
A

ism developed earlier. Recalling the definitions for the number operator N, Eq. (4),

and the state vector [_)N' Eq. (3), and using the commutation relations, Eq (5), we

may write,

A2 [ A ]2(ANo)^ 2 = N (q){ No {(_)>N -- N (_(I)] NoI(I))N

= N (4l no, i no.j -- no, i
iffil j=l i=l
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N N

j_:_

+ i(ml At 1 + na, Im>_ i<q_l ]q_)iC ,i -- i Ca, i -- nar, i
i=l i=l

N

N sin2tpa_ _ At At ^ ^= T ::t: i(_1 Ca, i Co, i Co, i Ca, i [(P)i (11)
i=l

where, as before, the upper and lower terms in braces correspond to cr = a or b, re-

spectively, and the _+ sign refers to the statistics of the particles: a plus sign for bosons

and a minus sign for fermions. We note that the last, statistics-dependent term of Eq.

(11) is the sum of non-negative matrix elements and so itself is non-negative or non-

positive, according to the plus sign or negative sign, respectively. A quantitative

analysis of the contribution of this statistics-dependent term requires a specific model of

the coherences between atoms in a dense beam. However, one can qualitatively state

that for sufficiently high densities the use of fermionic atoms will tend to lower the

quantum noise limit. This is because the last term will be negative. Bosons will have the

opposite effect. Detailed analysis of the statistics-dependent contribution is beyond the

scope of this letter, and will be left to a later work. Hence, since, in current experi-

ments, the beam intensity is so low that there is only one atom at a time within a single

coherence length. In this case, the statistics-dependent second term in the last line of
Eq. (11) is zero, and we are left with the result

<AN=> - _'_ sin_oal 3 (12)
2

We notice that this result depends on the total number of atoms N and not the mean

number n as in the Poisson-distribution argument given before. Now, the signal in

either branch Na is given by Eq. (7).

The quantum fluctuations in phase Aq_a/3 in the measured phase difference q_atl

may be determined by [8]

(zXN)

(13)
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a result that is independent of _a_" This independence might appear surprising at

first, but it is a direct result of the fact that the quantum number state noise (ANa) is

proportional to the slope of the signal (No) for the upper/lower number states consid-

ered here. (See, in particular, reference 8.) Again, we stress that N is not the expec-
tation value but rather the total number of atoms detected in the measurement time

t m. This is not then the expressior_ one would expect from application of the uncer-

tainty principle, for in that case N would have to be replaced by (N). We re-

emphasize that it has not been clear what form of the uncertainty principle one
should even use in an atom interferometer [6]. For light, the so called number-phase

uncertainty principle, A_AN > 1, yields for a coherent state A_o __ 1 / (N) - where the

expectation (N) and not the total number N is used. For atoms it is not obvious at all

what the relationship should be, and we have shown that the result is unexpected in

that Eq. (13) depends on the total number N, that is precisely known for the atom

interferometer, and where (AT) has no meaning. In contradistinction, in a laser

interferometer, it is impossible to know the total number of photons and only the

mean can be specified. Hence, the atom result, Eq. (13), is quantitatively,

qualitatively, and philosophically different from the optical result. Hence, Eq. (13) is
indeed a novel result. We note that B. Yurke obtained a similar result for Fermions,

using spin algebra techniques [9].

6. Comparing Laser and Matter Gyros

We conclude by applying this result to the gyroscope problem. Let us note that the

atom number N is given by j tin, where j is the atomic flux (in atoms per second) hit-

ting the detector. We have from Eq. (14) the minimum detectable phase shift, _min =

2/_fjtrn, and equating this to the signal derived earlier, _osignal = 2Am_/75, we find

the minimum detectable rotation rate £2 rain is given by

ti 1
f_min = (matter). (14)

Am J_m

This should be compared to the same result obtained from using an optical inter-

ferometer in which the flux j is given by the power P divided by the photon energy _eo

[5,7],in other words

f_min ti 1= (light), (15)

Amy _/p
_t
l_co m

2
where m r is the effective photon mass, defined by mr=-_io)/c . In Table 1 we com:

pare and-contrast properties of the matter-wave and laser light interferometers in

order to gauge their effectiveness in measuring _ rain. As mentioned before, we note
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that the typical photon effective mass gives an increase in sensitivity of 1010 . This

mass factor, however, is offset by the low particle flux available for atoms. This fact

increases the laser gyroscope sensitivity over that of matter-wave devices by a factor

of around 10 2 . In addition, the atoms make about one "round trip" through an

interferometer, whereas in a ring laser gyroscope the photons make many (= 10 4)

circuits around the ring and yield an additional sensitivity factor of 10 4 in favor of the

laser system. This still leaves the matter-wave device 10 4 times more sensitive.

In summary then, we conclude that the phase uncertainty arising in an atomic

interferometer arises from atomic number fluctuations associated with the sorting of

the particles between the two arms of the interferometer. Applying our results to an

interferometer used as a gyroscope, we find that a matter-wave gyroscope can be ex-

pected to be more sensitive to rotation by some four orders of magnitude than present
laser devices.

Mass

Factor

Flux

I

Round

Trips

Matter

~ 10 4 MeV

pvA ~ 1010 * 10 4 * 10 -2

= 1012 particles
sea

~I

~ leV

Laser

p 10 -3

h v 10 -19

~ 10 4

= 1016 photons
sec

Matter Over Light

Sensitivity Factor

_ 10 lo

~ 10 -2

TABLE I. Compared and contrasted are different properties of matter-wave and optical
gyroscopes in terms of their sensitivity to phase differences -- or equivalently -- rotation
rates. We see that the high mass of atoms initially contributes an increase of sensitivity

of 1010 , but that the low atomic beam intensity, compared to photon beams, removes some

of this advantage, as does the reduced number of round trips possible in an atom

interferometer. Nevertheless -- a typical factor of a 10 4 increase in rotation sensitivity
can still be expected using atoms rather than photons.
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